
RA(1) RA(1)

NAME
ra − readargus(8)data.

COPYRIGHT
Copyright (c) 2000-2011 QoSient. All rights reserved.

SYNOPSIS
ra [raoptions] [- filter-expression]

DESCRIPTION
Ra readsargus(8) data from eitherstdin, an argus-file, or from a remote data source, which can either be
anargus-server, or a netflow data server, filters the records it encounters based on an optionalfilter-expres-
sionand either prints the contents of theargus(5) records that it encounters tostdout or appends them into
anargus(5)datafile.

OPTIONS
−A Print aggregate statistics for the input stream on termination.

−b Dump the compiled transaction-matching code to standard output and stop. This is useful for debug-
ging filter expressions.

−c <char>
Specify a delimiter character for output columns (default is ’ ’).

−C <[host]:portnum>
Specify a source of Netflow data. The optional host is the local interface address where Netflow Cisco
records are going to be read. If absent, then it is implied that the interface address is AF_ANY.

−D <level>
Print debug information corresponding to<level> to stderr, if program compiled to support debug
printing. As the level increases, so does the amount of debug informationra(1) will print. Values
range from 1-8.

−e <regex>
Match regular expression in flow user data fields.Prepend the regex with either "s:" or "d:" to limit
the match to either the source or destination user data fields. Examples include:

"ˆSSH-" -Look for ssh connections on any port.
"s:ˆGET" -Look for HTTP GET requests in the source buffer.
"d:ˆHTTP.*Unauth" - Find unauthorized http response.

−E <file>
When using a filter expression at the end of the command, this option will causera(1) to append the
records that are rejected by the filter into<file>

−F <conffile>
Use<conffile> as a source of configuration information.The format of this file is identical torarc(5).
The data read from<conffile> overrides any prior configuration information.

−h Print an explanation of all the arguments.

−M <mode [mode ...]>
Provide addition mode operators.These are generally specific to the individual ra* program, or a spe-
cific function. Available modes for ra() are:

poll - successfully attach to remote data source and then exit
rmon -modify data to support unidiretional RMON stat reporting
saslmech="mech" - specify a mandatory SASL mech
TZ="tzset" -specify a tzset(3) time zone specification
xml - print output in xml format.
label="regex" - match flow label with regex(3) regular expression.
dsrs=dsrlist -process these dsrs

Where a dsrlist has the format:

ra 3.0 12 November 2007 1

RA(1) RA(1)

[+/-]dsr[,[+/-]dsr]

Supported dsrs are:
trans transportinformation, such as source id and seq number.
flow flow key data (proto, saddr, sport, dir, daddr, dport)
time timestamp fields (stime, ltime).
metric basic ([s|d]bytes, [s|d]pkts, [s|d]rate, [s|d]load)
agr aggregation stats (trans, avgdur, mindur, maxdur, stdev).
net network objects (tcp, esp, rtp, icmp data).
vlan VLAN tag data
mpls MPLSlabel data
jitter Jitter data ([s|d]jit, [s|d]intpkt)
ipattr IP attributes ([s|d]ipid, [s|d]tos, [s|d]dsb, [s|d]ttl)
psize packet size information
mac MAC addresses (smac, dmac)
icmp ICMPspecific data (icmpmap, inode)
encaps Flow encapsulation type indications
tadj Time adjustment data
cor Multi-probecorrelation data
cocode Country Codes
asn AutonomousSystem Number data
suser srcuser captured data bytes (suser)
duser dstcaptured user data bytes (duser)

Examples are:
-M dsrs=time,flow,metric
-M dsrs=-suser,-duser

sql="select" -use "select" as select clause in mysql call.

Illegal modes are not detectable by the standard library, and so unexpected results in command line
parsing may occur if care is not taken with use of this option.

−n Modify number to name converstion. Thisflag supports 4 states, specified by the modulus of the num-
ber of -n flags set.By default ra* programs do not provide hostname lookups, but they do lookup port
and protocol names. The first-n will suppress port number to service conversion, -nn will suppress
translation of protocol numbers to names (no lookups).-nnn will return you to full conversion, trans-
lating hostnames, port and protocol names, and-nnnn will return you to the default behavior.
Because this indicator can be set in the .rarc file, multiple-n flags progress through the cycle.

−N <num>
−N <start-end> −N <start+num>Process the first<num> records, the inclusive range<start - end >
of records, or process <num + 1> records starting at start. These are the range of records that match
the input filter if any filter is used.

−p <digits>
Print<digits> number of units of precision for floating point values.

−q Run in quiet mode. Configure Ra to not print out the contents of records. This can be used for a num-
ber of maintenance tasks, where you would be interested in the outcome of a program, or its progress,
say with the -D option, without printing each input record.

−r [- | <file[::soffset:eoffset] ...>]
Read data from<files> in the order presented on the commandline. ’−’ denotes stdin. If you want to
read a set of files and then, when done, read stdin, use multiple occurences of the-r option. Racan
readgzip(1), bzip2(1) andcompress(1)compressed data files. Use the optional byte offset specifica-
tion for reading specific data from a file.

ra 3.0 12 November 2007 2

RA(1) RA(1)

−R <dir dir ...>
Recursively decend the directory and process all the regular files that are encountered. The function
does not decend to links, or directories that begin with ’.’. The feature, like the -r command, does not
do any file type checking.

−s <[-][[+[#]]field[:len] ...>
Specify thefields to print. Ra uses a default printing field list, by specifying a field you can replace
this list completely, or you can modify the existing default print list, using the optional ’-’ and ’+[#]’
form of the command. The available fields to print are:

srcid, stime, ltime, sstime, dstime, dstime, dltime,
trans, seq, flgs, dur, avgdur, stddev, mindur, maxdur,
saddr, daddr, proto, sport, dport, stos, dtos, sdsb, ddsb,
sco, dco, sttl, dttl, sipid, dipid, smpls, dmpls, svlan, dvlan,
svid, dvid, svpri, dvpri, [s|d]pkts, [s|d]bytes,
[s||d]appbytes, [s|d]load, [s|d]loss, [s|d]ploss, [s|d]rate,
smac, dmac, dir, [s|d]intpkt, [s|d]intpktact, [s|d]intpktidl,
[s|d]jit, [s|d]jitact, [s|d]jitidl, state, suser, duser,
swin, dwin, trans, srng, erng, stcpb, dtcpb, tcprtt, inode,
offset, spktsz, dpktsz, smaxsz, dmaxsz, sminsz, dminsz

srcid argus source identifier.
stime record start time
ltime record last time.
trans aggregation record count.
flgs flow state flags seen in transaction.
seq argus sequence number.
dur record total duration.
avgdur av erage duration of aggregated records..
stddev standard deviation of aggregated duration times.
mindur minimum duration of aggregated records.
maxdur maximum duration of aggregated records.
smac source MAC addr.
dmac destination MAC addr.
saddr source IP addr.
daddr destination IP addr.
proto transaction protocol.
sport source port number.
dport destination port number.
stos source TOS byte value.
dtos destination TOS byte value.
sdsb source diff serve byte value.
ddsb destination diff serve byte value.
sco source IP address country code.
dco destination IP address country code.
sttl src -> dst TTL value.
dttl dst -> src TTL value.
sipid source IP identifier.
dipid destination IP identifier.
smpls source MPLS identifier.
dmpls destination MPLS identifier.
pkts total transaction packet count.
spkts src -> dst packet count.

ra 3.0 12 November 2007 3

RA(1) RA(1)

dpkts dst -> src packet count.
bytes total transaction bytes.
sbytes src -> dst transaction bytes.
dbytes dst -> src transaction bytes.
appbytes total application bytes.
sappbytes src -> dst application bytes.
dappbytes dst -> src application bytes.
load bits per second.
sload source bits per second.
dload destination bits per second.
loss pkts retransmitted or dropped.
sloss source pkts retransmitted or dropped.
dloss destination pkts retransmitted or dropped.
ploss percent pkts retransmitted or dropped.
psloss percent source pkts retransmitted or dropped.
pdloss percent destination pkts retransmitted or dropped.
rate pkts per second.
srate source pkts per second.
drate destination pkts per second.
dir direction of transaction
sintpkt (mSecs)

source interpacket arrival time
sintdist source interpacket arrival time distribution
sintpktact (mSecs)

source active interpacket arrival time
sintdistact source active interpacket arrival time
sintpktidl (mSecs)

source idle interpacket arrival time
sintdistidl source idle interpacket arrival time
dintpkt (mSecs)

destination interpacket arrival time
dintdist destination interpacket arrival time distribution
dintpktact (mSecs)

destination active interpacket arrival time
dintdistact destination active interpacket arrival time distribution
dintpktidl (mSecs)

destination idle interpacket arrival time
dintdistidl destination idle interpacket arrival time distribution
sjit source jitter (mSecs).
sjitact source active jitter (mSecs).
sjitidle source idle jitter (mSecs).
djit destination jitter (mSecs).
djitact destination active jitter (mSecs).
djitidle destination idle jitter (mSecs).
status transaction status
suser source user date buffer.
dvlan destination user date buffer.
swin source TCP window advertisement.
dwin destination TCP window advertisement.
svlan source VLAN identifier.
dvlan destination VLAN identifier.
svid source VLAN identifier.
dvid destination VLAN identifier.

ra 3.0 12 November 2007 4

RA(1) RA(1)

svpri source VLAN priority.
dvpri destination VLAN priority.
srng start time for the filter timerange.
erng end time for the filter timerange.
stcpb source TCP base sequence number
dtcpb destination TCP base sequence number
tcprtt TCP connection setup round-trip time.
inode ICMP intermediate node.
offset record byte offset in file or stream.
spktsz histogram for the src packet size distribution
smaxsz maximum packet size for traffic transmitted by the src.
dpktsz histogram for the dst packet size distribution
dmaxsz maximum packet size for traffic transmitted by the dst.
sminsz minimum packet size for traffic transmitted by the src.
dminsz minimum packet size for traffic transmitted by the dst.

Examles are:
-s saddr print only the source address.
-s -bytes removes the bytes field from list.
-s +2srcid adds the source identifier as the 2nd field.
-s spkts:18 prints src pkt count with a column width of 18.
-s smpls print the local mpls label in the flow.

−S <host[:portnum]>
−S <URI://host[:portnum]> Specify a remote source of argus data. Read argus data using TCP or
UDP sockets, using the URI format to indicate the type of argus record of interest (argus-tcp, argus-
udp) and the source, as a name or an addresss. Use the optional ’:portnum’ to specify a port number
other than the default; 561.

Examles are:
-S localhost request via TCP argus records from localhost.
-S 192.168.0.4:12345 request via TCP argus records from 192.168.0.4, port 12345.
-S argus://anubis requestvia TCP argus records from anubis, port 561.
-S argus-tcp://thoth:12345 requestvia TCP argus records from thoth, port 12345.
-S argus-udp://set:12345 requestvia UDP argus records from set, port 12345.

−t <timerange>
Specify the<time range> for matchingargus(5) records. This option supports a high degree of flexi-
bility in specifing explicit and relative time ranges with support for time field wildcarding.

The syntax for the<time range> is:
[timeComparisonInd]timeSpecification[-timeSpecification]

timeComparisonInd: [x]i | n | c (default = i)
x neg ation reverses the result of the time comparison
i intersects match records that were active during this time period
n includes matchrecords that start before and end after the period
c contained matchrecords that start and end during the period

timeSpecification: [[[yyyy/]mm/]dd.]HH[:MM[:SS]]
[yyyy/]mm/dd
%d{ymdHMS}
seconds
{ + | - } %d{ymdHMS}

ra 3.0 12 November 2007 5

RA(1) RA(1)

where ’*’ can be used as a wildcard.

Examples are:
-t 14 specify the time range 2pm-3pm for today
-t **.14 specify 2pm-3pm, every day this month
-t 1270616652+2s all records that span 10/04/07.01:04:12 EDT.
-t 1999y1m23d10h matches 10-11am on Jan, 23, 1999
-t 10d*h*m15s matches records that intersect the 15 sec,

any minute, any hour, on the 10th of this month
-t ****/11/23 all records in Nov 23rd, any year
-t 23.11:10-14 11:10:00 - 2pm on the 23rd of this month
-t -10m matches 10 minutes before, to the present
-t -1M+1d matches the first day of the this month.
-t -2h5m+5m matches records that start before and end

after the range starting 2 hours 5 minutes
prior to the present, and lasting 5 minutes.

Time is compared using basic intersection operations.A recordiPntersects a specified time range if
there is any intersection between the time range of the record and the comparison time range.
This is the default behavior. A record includes the comparison time range if the intersection of
the two ranges equals the comparison time, and a record is contained when the intersection
equals the duration of the record. Thecomparison indicator is the first character of the range
specification, without spaces.

Examples are:
-t n14:10:15-14:10:19records include these 4s.
-t c14:10-14:10:10 record starts and ends within these 10s.
-t xi-5s+25s record starts or ends 5 seconds earlier and

20 seconds after ’now’.

−T <secs>
Readargus(5)from remote server for<secs>of time.

−u Print time values using Unix time format (seconds from the Epoch).

−w <file> [filter-expression]
Append matching data to<file>, in argus file format. An output-fileof ’-’ directs ra to write the
argus(5) records to stdout, allowing for "chaining"ra* style commands together. The optional filter-
expression can be used to select specific output.

−X Don’t read the default rarc file.

−z Modify status field to represent TCP state changes. The values of the status field when this is enabled
are:
’s’ - Syn Transmitted
’S’ - Syn Acknowledged
’E’ - TCP Established
’f ’ - Fin Transmitted (FINWait State 1)
’F’ - Fin Acknowledged (FIN Wait State 2)
’R’ - TCP Reset

ra 3.0 12 November 2007 6

RA(1) RA(1)

−Z <s|d|b>
Modify status field to reprsent actual TCP flag values. <’s’rc | ’d’st | ’b’oth>. The characters that can
be present in the status field when this is enabled are:

’F’ - Fin
’S’ - Syn
’R’ - Reset
’P’ - Push
’A’ - A ck
’U’ - Urgent Pointer
’7’ - Undefined 7th bit set
’8’ - Undefined 8th bit set

FILTER EXPRESSION
If arguments remain after option processing, the collection is interpreted as a single filterexpression. In
order to indicate the end of arguments, a ’−’ is recommended before the filter expression is added to the
command line.

The filter expression specifies whichargus(5) records will be selected for processing.If no expressionis
given, all records are selected, otherwise, only those records for whichexpressionis ‘true’ will be printed.

The syntax is very similar to the expression syntax fortcpdump(1), as the tcpdump compiler was the basis
for the argus(5) filter expression compiler. The semantics fortcpdump(1)’s packet filter expression are
different when applied to transaction record filtering, so there are some major differences.

The expressionconsists of one or moreprimitives. Primitives usually consist of anid (name or number)
preceded by one or more qualifiers. There are three different kinds of qualifier:

type qualifiers say what kind of thing the id name or number refers to. Possible types aresrcid,
encaps, host, net, port, tos, ttl, ptks, bytes, appbytes, data, rate, load, loss, ploss, mid, vid,
vpri, andmid.

E.g., ‘srcid isis‘, ‘encaps gre’, ‘host sphynx’, ‘net 192.168.0.0/16’, ‘port domain’, ‘ttl 1’, ’ptks gt
2’, ’ploss lt 5’. If there is no type qualifier,host is assumed.

dir qualifiers specify a particular transfer direction to and/or froman id. Possible directions aresrc,
dst, src or dst andsrc and dst. E.g., ‘src sphynx’, ‘dst net 192.168.0.0/24’, ‘src or dst port ftp’,
‘src and dst tos 0x0a’, ‘src or dst vid 0x12‘, ‘dst vpri 0x02‘ .If there is no dir qualifier, src or dst
is assumed.

proto qualifiers restrict the match to a particular protocol.Possible values are those specified in the
/etc/protocolssystem file and a small number of extensions, (that should be defined but aren’t).
Specific extended values are’ipv4’ , (to specify just ip version 4), in contrast to the defined proto
’ipv6’ . The defined proto’ip’ reduces to the filter ’ipv4 or ipv6’.

When preceeded byether, the protocol names and numbers that are valid are specified in
./include/ethernames.h.

In addition to the above, there are some special ‘primitive’ keywords that don’t follow the pattern:gateway,
multicast, andbroadcast. All of these are described below.

More complex filter expressions are built up by using the wordsand, or andnot to combine primitives.
E.g., ‘host foo and not port ftp and not port ftp-data’.To sav e typing, identical qualifier lists can be

ra 3.0 12 November 2007 7

RA(1) RA(1)

omitted. E.g.,‘tcp dst port ftp or ftp-data or domain’ is exactly the same as ‘tcp dst port ftp or tcp dst port
ftp-data or tcp dst port domain’.

Allowable primitives are:

srcid argusid
True if the argus identifier field in the Argus record issrcid, which may be an IP address, a name
or a decimal/hexidecimal number.

encapstype
True if the encapsulation used by the flow in the Argus record includes thetype. The list of valid
encapsulation types is:

mpls, eth, 802q, llc, pppoe, isl, gre, ah, ipnip, ipnip6, chdlc

dst hosthost
True if the IP destination field in the Argus record ishost,
which may be either an address or a name.

src hosthost
True if the IP source field in the Argus record ishost.

hosthost
True if either the IP source or destination in the Argus record ishost.
Any of the above host expressions can be prepended with the keywords
ip, arp, or rarp as in:

ip hosthost
which is equivalent to:

ether proto ip and hosthost
If hostis a name with multiple IP addresses, each address will be checked for a match.

ether dstehost
True if the ethernet destination address isehost. Ehostmay be either a name from /etc/ethers or a
number (seeethers(3N) for numeric format).

ether srcehost
True if the ethernet source address isehost.

ether hostehost
True if either the ethernet source or destination address isehost.

gatewayhost
True if the transaction usedhostas a gateway. I.e., the ethernet source or destination address was
hostbut neither the IP source nor the IP destination washost. Host must be a name and must be
found in both /etc/hosts and /etc/ethers. (An equivalent expression is

ether hostehostand not hosthost
which can be used with either names or numbers forhost / ehost.)

dst netcidr
True if the IP destination address in the Argus record matches thecidr address.

src net cidr
True if the IP source address in the Argus record matches thecidr address.

ra 3.0 12 November 2007 8

RA(1) RA(1)

net cidr
True if either the IP source or destination address in the Argus record matchescidr address.

dst port port
True if the network transaction is ip/tcp or ip/udp and has a destination port value ofport. The
port can be a number or a name used in /etc/services (seetcp(4P) andudp(4P)). If a name is used,
both the port number and protocol are checked. If a number or ambiguous name is used, only the
port number is checked (e.g.,dst port 513will print both tcp/login traffic and udp/who traffic, and
port domain will print both tcp/domain and udp/domain traffic).

src port port
True if the network transaction has a source port value ofport.

port port
True if either the source or destination port in the Argus record isport. Any of the above port
expressions can be prepended with the keywords,tcp or udp, as in:

tcp src port port
which matches only tcp connections.

ip proto protocol
True if the Argus record is an ip transaction (seeip(4P)) of protocol typeprotocol. Protocol can
be a number or any of the string values found in/etc/protocols.

multicast
True if the network transaction involved an ip multicast address. By specifing ether multicast, you
can select argus records that involve an ethernet multicast address.

broadcast
True if the network transaction involved an ip broadcast address.By specifing ether broadcast,
you can select argus records that involve an ethernet broadcast address.

ether proto protocol
True if the Argus record is of ether typeprotocol. Protocol can be a number or a name like ip,
arp, or rarp.

[src | dst] ttl [gt | gte | lt | lte | eq]number
True if the TTL in the Argus record equalsnumber.

[src | dst] tos [gt | gte | lt | lte | eq]number
True if the TOS in the Argus record (default) equalsnumber.

[src | dst] vid [gt | gte | lt | lte | eq]number
True if th VLAN id in the Argus record (default) equalsnumber.

[src | dst] vpri [gt | gte | lt | lte | eq]number
True if the VLAN priority in the Argus record (default) equalsnumber.

[src | dst] mid [gt | gte | lt | lte | eq]number
True if the MPLS Label in the Argus record (default) equalsnumber.

[src | dst] pkts [gt | gte | lt | lte | eq]number
True if the packet count in the Argus record (default) equalsnumber.

ra 3.0 12 November 2007 9

RA(1) RA(1)

[src | dst] bytes [gt | gte | lt | lte | eq]number
True if the byte count in the Argus record (default) equalsnumber.

[src | dst] appbytes [gt | gte | lt | lte | eq]number
True if the application byte count in the Argus record (default) equalsnumber.

[src | dst] rate [gt | gte | lt | lte | eq]number
True if the rate in the Argus record (default) equalsnumber.

[src | dst] load [gt | gte | lt | lte | eq]number
True if the load in the Argus record (default) equalsnumber.

Ra filter expressions support primitives that are specific to flow states and can be used to select flow records
that were in these states at the time they were generated.normal, wait, timeout, estor con

Primitives that select flows that experienced fragmentation.fragandfragonly

Support for selecting flows that used multiple pairs of MAC addresses during their lifetime.multipath

Primitives specific to TCP flows are supported.syn, synack, ecn, fin, finack, reset, retrans, outoforderand
winshut

Primitives specific to ICMP flows are supported.echo, unreach, redirectandtimexed

For some primitives, a direction qualifier is appropriate. These arefrag, reset, retrans, outoforderandwin-
shut

Primitives may be combined using:

A parenthesized group of primitives and operators (parentheses are special to the Shell and must
be escaped).

Negation (‘!’ or ‘ not’).

Concatenation (‘and’).

Alternation (‘or’).

Negation has highest precedence. Alternation and concatenation have equal precedence and associate left
to right. Note that explicitand tokens, not juxtaposition, are now required for concatenation.

If an identifier is given without a keyword, the most recent keyword is assumed.For example,
not host sphynx and anubis

is short for
not host sphynx and host anubis

which should not be confused with
not (host sphynx or anubis)

Expression arguments can be passed tora(1) as either a single argument or as multiple arguments, which-
ev er is more convenient. Generally, if the expression contains Shell metacharacters, it is easier to pass it as

ra 3.0 12 November 2007 10

RA(1) RA(1)

a single, quoted argument. Multiplearguments are concatenated with spaces before being parsed.

Startup Processing
Ra begins by searching for the configuration file.rarc first in the directory, $ARGUSHOME and then
$HOME . If a .rarc is found, all variables specified in the file are set.

Ra then parses its command line options and set its internal variables accordingly.

If a configuration file is specified on the command-line, using the "-f <confile>" option, the values in this
.rarc formatted file superceed all other values.

EXAMPLES
To report all TCP transactions from and to host ’narly.wav e.com’, reading transaction data fromargus-file
argus.data:

ra -r argus.data - tcp and host narly.wave.com

Create theargus-fileicmp.log with all ICMP events involving the host nimrod, using data fromargus-file,
but reading the transaction data fromstdin:

cat argus-file| ra -r - -w i cmp.log - icmp and host nimrod

OUTPUT FORMAT
The following is a brief description of the default output of .B ra. While this is by no means the ’preferred’
set of data that one should generate, it represents a starting point for using flow data in general. This also
looks pretty good on 80 column terminals. The format is:

time proto srchost dir dsthostmetrics state

time
The format of thetime field is specified by the .rarc file, using syntax supported by the routinestrf-
time(3V). The default is ’%T’.Argus transactional data contains both starting and ending transaction
times, with precision to the microsecond. However, ra by default prints out the ’stime’ field, the
records starting time.

proto [options protocol]
Theproto indicator consists of two fields. The first is protocol specific and the designations are:

T - Time Corrected/Adjusted
* - Multiple sub-IP encapsulations
e - Ethernet encapsulated flow
M - Multiple mac addresses seen
m - MPLS encapsulated flow
l - LLC encapsulated flow
v - 802.11Q encapsulations/tags
w - 802.11 wireless encapsulation
p - PPP over Enternet encapsulated flow
i - ISL encapsulated flow
G - GRE encapsulation
a - AH encapsulation
P - IP tunnel encapsulation
6 - IPv6 tunnel encapsulation
H - HDLC encapsulation
C - Cisco HDLC encapsulation

ra 3.0 12 November 2007 11

RA(1) RA(1)

A - ATM encapsulation
S - SLL encapsulation
F - FDDI encapsulation
s - SLIP encapsulation
R - ARCNET encapsulation
I - ICMP events mapped to this flow
U - ICMP Unreachable event mapped to this flow
R - ICMP Redirect event mapped to this flow
T - ICMP Time Exceeded mapped to this flow
* - Both Src and Dst loss/retransmission
s - Src loss/retransmissions
d - Dst loss/retransmissions
& - Both Src and Dst packet out of order
i - Src packets out of order
r - Dst packets out of order
@ - Both Src and Dst Window Closure
S - Src TCP Window Closure
D - Dst TCP Window Closure
* - Silence suppression used by both src and dst (RTP)
s - Silence suppression used by src
d - Silence suppression used by src
E - Both Src and Dst ECN
x - Src Explicit Congestion Notification
t - Dst ECN
V - Fragment overlap seen (if fragments seen)
f - Partial Fragment (if fragments seen)
F - Fragments seen
O - multiple IP options set
S - IP option Strict Source Route
L - IP option Loose Source Route
T - IP option Time Stamp
+ - IP option Security
R - IP option Record Route
A - IP option Router Alert
U - unknown IP options set

The second field indicates the upper protocol used in the transaction. This field will contain the first 4
characters of the official name for the protocol used, as defined in RFC-1700.Argus attempts to dis-
covery the Realtime Transport Protocol, when it is being used. When it encounters RTP, it will indi-
cate its use in this field, with the string ’rtp’. Useof the -n option, twice (-nn), will cause the actual
protocol number to be displayed.

srchost
Thesrchostfield is meant to convey the originator of the data in the flow. This field is protocol depen-
dent, and for IP protocols will contain the src IP address/name.For TCP and UDP, the field will also
contain the port number/name, separated by a period.

The ’src’ is generally the entity that first transmits a packet that is a part of a flow. Howev er, the
assignment of ’src’ and ’dst’ semantics is somewhat complicated by the notion of loss, or half-duplex
monitoring, especially when connection-oriented protocol , such as TCP, are reported.In this case the
’src’ is the entity that initiated the flow.

ra 3.0 12 November 2007 12

RA(1) RA(1)

dir
Thedir field will have the direction of the transaction, as can be best determined from the datum, and is
used to indicate which hosts are transmitting. For TCP, the dir field indicates the actual source of the
TCP connection, and the center character indicating the state of the transaction.

- - transaction was NORMAL
| - transaction was RESET
o - transaction TIMED OUT.
? -direction of transaction is unknown.

dsthost
The dsthostfield is meant to convey the recipient of the data in the flow. Like the srchost field, this
field is protocol dependent, and for IP protocols will contain the dst IP address/name, and optionally
the DSAP.

metrics
metricsrepresent the general sets of fields that reflect the activity of the flow. In the default output,
there are 4 fields.The first 2 are the packet counts and the last 2 are the byte counts for the specific
transaction. Thefields are paired with the previous host fields, and represent the packets transmitted
by the respective host.

state
The statefield indicates the principle state for the transaction report, and is protocol dependent.For
all the protocols, except ICMP, this field reports on the basic state of a transaction.

REQ|INT (requested|initial)
This indicates that this is theinitial state report for a transaction and is seen only when theargus-
serveris in DETAIL mode. For TCP connections this isREQ, indicating that a connection is being
requested. For the connectionless protocols, such as UDP, this isINT .

ACC (accepted)
This indicates that a request/response condition has occurred, and that a transaction has been detected
between two hosts. For TCP, this indicates that a connection request has been answered, and the con-
nection will be accepted.This is only seen when theargus-serveris in DETAIL mode. For the con-
nectionless protocols, this state indicates that there has been a single packet exchange between two
hosts, and could qualify as a request/response transaction.

EST|CON (established|connected)
This record type indicates that the reported transaction is active, and has been established or is contin-
uing. Thisshould be interpreted as a state report of a currently active transaction. For TCP, the EST
state is only seen in DETAIL mode, and indicates that the three way handshake has been completed
for a connection.

CLO (closed)
TCP specific, this record type indicates that the TCP connection has closed normally.

TIM (timeout)
Activity was not seen relating to this transaction, during theargus server’s timeout period for this pro-
tocol. Thisstate is seen only when there were packets recorded since the last report for this transac-
tion.

For the ICMP and ICMPv6 protocols, thestatefield displays specific aspects of the ICMP type.ICMP
state can have the values:

ra 3.0 12 November 2007 13

RA(1) RA(1)

ECO Echo Request
ECR Echo Reply
SRC Source Quench
RED Redirect
RTA Router Advertisement
RTS Router Solicitation
TXD Time Exceeded
PAR Parameter Problem
TST Time Stamp Request
TSR Time Stamp Reply
IRQ Information Request
IRR Information Reply
MAS Mask Request
MSR Mask Reply
URN Unreachable network
URH Unreachable host
URP Unreachable port
URF Unreachable need fragmentation
URS Unreachable source failed
URNU Unreachable dst network unknown
URHU Unreachable dst host unknown
URISO Unreachable source host isolated
URNPRO Unreachable network administrative prohibited
URHPRO Unreachable host administrative prohibited
URNTOS Unreachable network TOS prohibited
URHTOS Unreachable host TOS prohibited
URFIL Unreachable administrative filter
URPRE Unreachable precedence violation
URCUT Unreachable precedence cutoff

MRQ Membership Query
MHR Membership Report
NRS Neighbor Discovery Router Solicit
NRA Neighbor Discovery Router Advertisement
NNS Neighbor Discovery Neighbor Solicit
NNA Neighbor Discovery Neighbor Advertisement
PTB Packet Too Big

OUTPUT EXAMPLES
These examples show typical ra output, and demonstrates a number of variations seen inargus data. This
ra output was generated using the-n option to suppress number translation.

Thu 12/29 06:40:32 S tcp 132.3.31.15.6439-> 12.23.14.77.23 CLO
This is a normal tcp transaction to the telnet port on host 12.23.14.77.The IP Option strict source route
was seen.

Thu 12/29 06:40:32 tcp 132.3.31.15.6200 <| 12.23.14.77.25RST
This tcp transaction from the smtp port of host 12.23.14.77 wasRESET. In many cases this indicates that
the transaction was rejected, however some os’s will use RST to close an active TCP. Use either the -z or
-Zb options to specify exactly what conditions existed during the connection.

Thu 12/29 03:39:05M i gmp 12.88.14.10 <-> 128.2.2.10 CON

ra 3.0 12 November 2007 14

RA(1) RA(1)

This is an igmp transaction state report, usually seen with MBONE traffic. Therewas more than one source
and destination MAC address pair used to support the transaction, suggesting a possible routing loop.

Thu 12/29 06:40:05 * tcp 12.23.14.23.1043 <->12.23.14.27.6000 TIM
This is an X-windows transaction, that hasTIMEDOUT . Packets were retransmitted during the connec-
tion.

Thu 12/29 07:42:09 udp 12.9.1.115.2262 ->28.12.141.6.139 INT
This is an initial netbios UDP transaction state report, indicating that this is the first datagram encountered
for this transaction.

Thu 12/29 06:42:09 icmp 12.9.1.115 <-> 12.68.5.127 ECO
This example represents a "ping" of host 12.9.1.115, and its response.

This next example shows thera output of a complete TCP transaction, with the preceeding Arp and DNS requests,
while reading from a remoteargus-server. The ’*’ in the CLO report indicates that at least one TCP packet was
retransmitted during the transaction. The hostnames in this example are ficticious.

% ra -S argus-tcp://argus-serverand host i.qosient.com
ra: Trying argus-server port 561
ra: connected Argus Version 3.0
Sat 12/03 15:29:38 arp i.qosient.com who-has dsn.qosient.com INT
Sat 12/03 15:29:39 udp i.qosient.com.1542 <->dns.qosient.53 INT
Sat 12/03 15:29:39 arp i.qosient.com who-has qosient.comINT
Sat 12/03 15:29:39 *tcp i.qosient.com.1543-> qosient.com.smtpCLO

AUTHORS
Carter Bullard (carter@qosient.com).

FILES
/etc/ra.conf

SEE ALSO
argus(8) tcpdump(1),

Postel, Jon,Internet Protocol, RFC791, Network Information Center, SRI International, Menlo Park, Calif.,
May 1981.

Postel, Jon,Internet Control Message Protocol, RFC 792, Network Information Center, SRI International,
Menlo Park, Calif., May 1981.

Postel, Jon,Tr ansmission Control Protocol, RFC793, Network Information Center, SRI International, Menlo
Park, Calif., May 1981.

Postel, Jon,User Datagram Protocol, RFC768, Network Information Center, SRI International, Menlo Park,
Calif., May 1980.

McCanne, Steven, and Van Jacobson,The BSD Packet Filter: A New Arc hitecture for User-level Capture,
Lawrwnce Berkeley Laboratory, One Cyclotron Road, Berkeley, Calif., 94720, December 1992.

ra 3.0 12 November 2007 15

