Society, Law Enforcement and the Internet

Models for “Give-and-Take”

Carter Bullard
CEO/President
QoSient, LLC
150 E 57th Street Suite 12D
New York, New York 10022
carter@qosient.com

ICCS 2010
New York, New York
Carter Bullard carter@qosient.com

- QoSient - Research and Development Company
 - Naval Research Laboratory (NRL), GIG-EF, JCTD-LD, DISA, DoD
 - Network Performance Security Research and Development
 - DARPA CORONET Optical Network Security

- QoS/Security Network Management - Nortel / Bay

- Security/QoS Product Manager – FORE Systems

- CMU/Software Engineering Institute CERT
 - Network Intrusion Research and Analysis
 - NAP Site Security Policy Development
 - Principal Network Security Incident Coordinator

- NFSNet Core Administrator (SURAnet)

- Standards Participation
 - Editor of ATM Forum Security Signaling Standards
 - IETF Working Group(s), Internet2 Security WG, NANOG
US Cyber Security Focus

- Comprehensive National CyberSecurity Initiative
 - Shifting the US focus from CyberCrime to CyberWarfare

- Strategy and technology focused on new issues
 - Public sector defense, with nation state threats and countermeasures
 - New emphasis on military concepts in Cyber Security
 - Shift from detection to prevention
 - Possible retaliatory mechanisms

- Multi-billion dollar budget will have a significant impact
 - Redefine CyberSecurity for most of the public
 - Compete for best/brightest in security research
 - Determine a new direction for commercial security products
US Cyber Strategy Issues

- Cyber Crime still represents 99% of the cyber problem.
- Change in focus may create strategies and technologies that are inappropriate for addressing Cyber Crime.
 - Example: many CNCI initiatives involve enhanced monitoring:
 - To support advanced intrusion detection and prevention.
 - Sharing of network monitoring data for enhanced situational awareness.
 - In the public sector’s .gov, .mil and classified networks, where there is no expectation of privacy. Enhanced monitoring is a very good thing.
 - In the private sector, however, any level of enhanced monitoring is perceived by the public as wiretapping.
- Can the CNCI produce a surveillance strategy that represents an acceptable privacy strategy?
- An old public-private partnership may be able to help.
LEAs and Telecommunications

- US Lawful Intercept
- Pen Register
- Trap and Trace
- Content Interception

However, the principal interaction of LEAs with the telecommunications industry are subpoenas of telephone billing records. (over 100X number of Lawful Intercepts)

Private-Public Partnership

- Telephone Billing Records, Call Detail Records (CDR), are a by product of Telco network operations and considered Customer Proprietary Network Information (CPNI).
- Society provides privacy protection for CPNI
 - Of course, the customer can have access to the information at anytime
 - No voluntary disclosure by telco, without customer approval
 - Government can gain access through warrants, or trail subpoenas
- CDRs contain no content, but have high security utility
 - Provide an effective and well recognized deterrent against crime
 - Private and Public sectors rely on CDRs for investigative purposes
 - Provides an enhanced Situational Awareness
 - Used by LEAs to demonstrate need for further investigation
- CDRs directly minimizes the use of Lawful Intercept
- Can CDR equivalent strategies be realized in the Internet?
- Is it possible to enable this partnership in the Internet?
- Can the CNCI use this type of partnership for national Cyber Security?
What Are CDRs Used For?

- Billing
- Traffic Engineering
- Network Management
- Maintenance
- Marketing
- Product Development
- Security
 - Fraud Detection
 - Forensics Analysis
 - Incident Response
 - Non-Repudiation / Audit

From ITU-T Recommendation E.800 Quality of Service, Network Management and Traffic Engineering
Theoretical Security Threats and Countermeasures

<table>
<thead>
<tr>
<th>Countermeasures</th>
<th>Unauthorized</th>
<th>Degradation of Service</th>
<th>Repudiation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Use</td>
<td>Modification</td>
<td>Disclosure</td>
</tr>
<tr>
<td>Authentication</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Integrity</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Confidentiality</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Access Control</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Non-Repudiation/Audit</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

From ITU-T Recommendation X.805 Security Architecture for Systems Providing End-to-End Communications

- Primary Security Countermeasure
- Secondary Security Countermeasure
Network Auditing

- Specified by DoD in NCSC-TG-005

- Goal to provide accountability for all network use
 - Comprehensive audits are Non-Repudiation systems
 - Creates **real deterrence** in formal systems
 - Fear of getting caught is extremely powerful
 - Utility comes from the quality of collected information

- Internet network transaction auditing is emerging
 - Started at the CMU CERT-CC in early 1990's - Argus
 - Directly modeled after the PSTN CDR
 - Aspects of IP network auditing are being standardized
IP Network Flow Information

- All types contain IP addresses, network service identifiers, starting time, duration and some usage metrics, such as number of bytes transmitted.
- More advanced types are transactional, convey network status and treatment information, service identification, performance data, geo-spatial and net-spatial information, control plane information, and extended service content.

Available IP Flow Information
- **Argus**
 - Control and Data Plane network forensics auditing
 - Archive, file, stream formats. (Binary, SQL, CSV, XML)
- **YAF/SiLK - CERT-CC**
 - Designed for Cyber security forensics analysis
 - IETF IPFIX stream formats. Binary file format.
- **IPDR - Billing and Usage Accountability**
 - ATIS, ANSI, CableLabs, SCTE, 3GPP, Java CP, ITU/NGN
 - File and stream formats (XML).
- **Netflow, JFlow, Sflow**
 - Integrated network vendor flow information - statistical/sampled
 - Used primarily for router operations, network management
Why IP Network Auditing?

- Effective information for incident response
 - Historical data used for attack attribution
 - Forensic data supports attack identification and cleanup
 - Supports policy enforcement modifications for prevention
 - Near real-time strategies for Zero day vulnerability analysis

- Enhanced network situational awareness
 - Network Policy Enforcement Assurance
 - Are my IPS / IDS / Firewall protections still working?
 - Network Fault Attribution
 - Is it an attack? Is it real? Is it a bug?
 - Network Service Utilization
 - Who’s using/abusing my DNS servers?
 - What is generating Email in my enterprise?
 - How much data did that machine transmit last night?
 - Network Non-repudiation deterrent
Who’s Doing Network Auditing?

- **Educational Sites** (1000’s of sites world-wide)
 - Carnegie Mellon University
 - Stanford University
 - University of Chicago
 - New York University
 - Enterprise wide near realtime network security audit
 - Distributed Security Monitoring
 - Network forensics security research

- **U.S. Government**
 - Naval Research Laboratory - Security Incidence Response

- **ISPs, Enterprises, Corporations, Individuals**
 - General Electric - large scale situational awareness
 - General Dynamics - security forensics
 - Network Service Providers
 - Operational/Performance Optimization
Enterprise Border Awareness
Outside Inside / Them vs Us
Comprehensive Enterprise Awareness
Dealing with the Insider Threat

End Station
ARP
AAA
STP
OSPF
MPLS Network
RSVP-TE/LDP
IS-IS-TE
IS-IS-TE
BGP
Domain Name Server
DNS
Root Servers
Connection Controller
Policy Server
Call Controller
Call Control
Policy Control
Connection Control
Data Plane
Management Plane
FCAPS

End Station
Argus

End Station
Argus
Distributed Situational Awareness
Multi-Probe Multi-Site

- White/Visible Node
- Black/Non-Visible Node
- Comprehensive Flow IS
- Argus Sensor

Data Plane
Situational Awareness Data

Core Management Domain
Enterprise Management Domain

Argus Sensor
Argus is the predominant tool for network flow monitoring/policy enforcement.

Probes at key points on network:
- Border
- Core
- Wireless network
- Ad-hoc on edge routers (moved as necessary)
Success stories:

- Forensic examination of compromised machine traffic
 - Determining size and scope
 - Correlating with other events
- Auditing correct router ACLs
 - Examine real time flows on both sides of the router
- User consultations regarding bandwidth usage
 - Reports of machine traffic can be generated
- Configuration issues with VPN infrastructure
 - Examining flows identified source of problem
Private-Public Partnership

- With enterprises generating and collecting IP network flow data, for their own Cyber Security purposes, we have a key part of the puzzle.

- CDR data equivalents can be realized for the Internet
 - Can IP network flow data minimize the need for content capture?
 - Enterprises are effectively identifying, analyzing, and responding to CyberSecurity incidents using some IP flow audit strategies.

- Question is can LEAs get the same level of utility

- Can Society accept the similarities of IP network flow data and Telco CDRs, and give IP network flow data equivalent considerations?
 - Public debate and legislation can address this issue.
New Public-Private Partnership?

• The private sector is generating and collecting its own IP network flow data for most of the same reasons that the PSTN processes CDRs.

• Society has learned how to effectively use IP network flow data for its benefit, giving up some aspects of privacy in order to achieve a higher level of general privacy protection through minimizing Lawful Intercept.

• The private sector actively contributes to national Cyber Security through controlled sharing of its own network session data.

• Adoption of this public-private partnership enables a historically recognizable deterrence to crime.
Going Dark

- Changes in technology and billing models in the traditional PSTN are driving some telcos to consider stopping CDR collection and retention.

- Because there are no current statutes or regulations to compel telcos to collect and retain CDRs, assuring CDR availability may be difficult.

- Should we recognize this as a national security vulnerability?

- The CNCI strategy may need to consider more than just data network security issues.
Questions?

• For more information please visit
 http://qosient.com/argus

• Contact me directly via email
carter@qosient.com